NOTE: This protocol has not been validated with clinical samples. To facilitate collaborations with interested parties to jointly advance the fight against the current coronavirus pandemic, we have set up a public forum on www.LAMP-Seq.org.
Purpose of this LAMP-Seq Starter Kit

This kit provides detailed instructions for establishing a LAMP-Seq reaction. The purpose of this kit is setting up the method in other labs for further development and optimization.

This protocol has not been validated on clinical samples.

Materials

- 1.5 ml reaction tubes
- PCR strip tubes and caps
- Thermocycler
- Agarose gel equipment
- Ultrapure water
- WarmStart® LAMP Kit (NEB, E1700S)
- NEBNext® High-Fidelity 2X PCR Master Mix (NEB, M0541S)
- 2019-nCoV_N_Positive Control plasmid (IDT, 10006625)
- HiScribe™ T7 High Yield RNA Synthesis Kit (NEB, E2040S)
- Unrelated plasmid (e.g. pX330-U6-Chimeric_BB-CBh-hSpCas9, Addgene #42230)
- Primer C-IVT-fwd (IDT)

 AAGCTAATACGACTCACTATAGCATACAATGTAACACAAGCTTTTCGG
- Primer C-IVT-rev (IDT)

 CTTGATCTTTTGAAATTTGGATCTTTGTC
- Primer C-F3 (IDT)
 AACACAAGCTTTTGCCAG

- Primer C-B3 (IDT)
 GAAATTTGGATCTTTGTCCATCC

- Primer C-FIP-AGCTTACACT (IDT)
 TGCGGCAATGGTGGTCAATCAG AGCTTACACT CCAAGGAATTTTGAGGGAC

- Primer C-BIP (IDT)
 CGCATGGGCATGGAGTCAC TTTGATGGCACCCTGTGTAAG

- Primer C-LF (IDT)
 TTCCTGTCTGATTAGTTC

- Primer C-LB (IDT)
 ACCTTCGGGAACGTGGTT

- Primer PCR-C-fwd-10 (IDT)
 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAAGCGCTGGGGAAGCGCTGGGGAACGTGGTTAAA

- Primer PCR-C-rev-11 (IDT)
 TGACTTGGAGTTCAGACGGGTCTTGATCGGTTTGTAATCCAGTTCTTGTGCTTG

Protocol

1. Generate template RNA by IVT
 a. Perform a NEBNext PCR
1. Primers: C-IVT-fwd and C-IVT-rev

 ii. Template: 2019-nCoV_N Positive Control plasmid

 b. Column-purify and elute in water,

 c. perform an IVT reaction using HiScribe™ T7 High Yield RNA Synthesis Kit for 12 hours,

 d. column-purify and elute in water,

 e. measure concentration using NanoDrop.

2. Make the following plasmid pre-dilutions:

 a. Make a stock dilution of an unrelated plasmid in water at 5 ng/µl:

 i. 5 µl plasmid (1 µg/µl) + 995 µl water.

 b. Create a dilution series:

 i. Using the plasmid dilution, sequentially dilute template RNA down to four molecules / µl. Use large pipetting volumes if possible (e.g. 2 µl + 998 µl).

3. Prepare a 10x LAMP primer mix:

 a. 16 µl C-FIP-AGCTTACACT (100 µM),

 b. 16 µl C-BIP (100 µM),

 c. 2 µl C-F3 (100 µM),

 d. 2 µl C-B3 (100 µM),

 e. 4 µl C-LF (100 µM),

 f. 4 µl C-LB (100 µM),

 g. 56 µl water,

 h. mix by pipetting.

4. Perform barcoded LAMP reactions:
a. Prepare a reaction mix:
 i. 312.5 µl 2x LAMP Master Mix (NEB),
 ii. 62.5 µl 10x LAMP primer mix,
 iii. 125 µl water,
 iv. 125 µl template RNA (four molecules / µl RNA in 5 ng/µl plasmid DNA),
 v. mix by pipetting.

b. Aliquot 25 µl reaction mix into each of 24 tubes in PCR strips,

c. incubate the LAMP reactions in a thermocycler for 40 minutes at 65 °C, and subsequently for 10 minutes at 95 °C.

5. Dilute the LAMP reactions 100-fold in PCR strips:
 a. 2 µl LAMP reaction + 198 µl water.

6. Perform PCR reactions:
 a. Prepare a reaction mix:
 i. 150 µl NEBNext 2x Master Mix (NEB),
 ii. 1.5 µl PCR-C-fwd-10 (100 µM),
 iii. 1.5 µl PCR-C-rev-11 (100 µM),
 iv. 147 µl water,
 v. mix by pipetting.

b. Aliquot 9 µl reaction mix into each of 24 tubes in PCR strips,

c. to each reaction, add 1 µl of diluted LAMP reaction,

d. mix by pipetting,

e. run the PCR reaction in a thermocycler with the following protocol:
 i. 98 °C 3 minutes,
ii. 98 °C 20 seconds (15 cycles),

iii. 65 °C 20 seconds (15 cycles),

iv. 72 °C 30 seconds (15 cycles),

v. 72 °C 3 minutes,

vi. 4 °C hold.

7. Run 5 µl of each PCR reaction on a 1% agarose gel.

Expected outcome

Positive reactions are expected to yield a single strong band at an estimated size of 184 bp. At 20 molecules per reaction, around 10 out of 24 reactions are expected to be detected as positive.